

Term	Description	Ref
Bisulfite sequencing	Technique used to determine the pattern of allelic DNA	8
	methylation (5mC) at specific genomic regions.	
Chromatin	Complex of DNA and proteins that makes up chromosomes in the	
	nucleus of eukaryotic cells.	
Chromosome	The process by which chromatin is compacted into chromosomes	
condensation	during cell division.	
Chromosome	The three-dimensional structure of a chromosome within the	
conformation	nucleus.	
Chromatin	A laboratory technique used to isolate specific regions of chromatin	
immunoprecipitation	for analysis.	
(ChIP)		
Chromatin marks	Covalent modifications of the chromatin that include the	1
	methylation of the fifth carbon of cytosine (5mC) on the DNA	
	molecules and histone post-translational modifications (PTMs).	
	Histone PTMs include methylation, acetylation, ubiquitination,	
	phosphorylation, sumoylation, and poly (ADP) ribosylation. Genes,	
	transposable elements, heterochromatin, and so on are marked by a	
	particular combination of epigenetic marks that define their	
	epigenetic state. When inherited, stable chromatin marks are	
	referred to as 'epigenetic marks'.	
Chromatin remodelling	The modification of chromatin structure through changes in the	22
C	accessibility of condensed genomic DNA to the proteins that	
	regulate transcription, allowing for dynamic regulation of gene	
	expression in response to different signals	
Differentially methylated	Sites with statistically significant differences in average	
position (DMP)	methylation levels between groups.	
Differentially methylated	A genomic region that has different DNA methylation patterns	21
region (DMR)	among multiple samples	
DNA demethylation	The removal of a methyl group from position 5 of a cytosine base	8
5	(5mC). DNA demethylation may occur through either a 'passive'	
	mechanism that relies on replication-dependent dilution or an	
	'active' process driven by enzymatic replacement independently of	
	DNA replication. As DNA methylation is associated with	
	transcriptional silencing, DNA demethylation can generate a	
	transcriptionally competent state.	
DNA methylation	A covalent modification of the nucleotide cytosine, which is	11
J	heritable during cell division and is associated generally with gene	
	silencing.	
Endogenous small RNAs	Small RNAs that are encoded in the genome or are amplified based	16
0	on genomically encoded small RNAs. Small RNAs are abundant	-
	and are predicted to regulate the expression of thousands of coding	
	and non-coding transcripts.	

EPI-CATCH COST

Epialleles	Alleles that are genetically identical (no sequence difference) but	1
	present distinct epigenetic profiles due to differences in chromatin	
	marks, such as DNA methylation, that may be associated with	
	changes in gene expression depending on the location of the	
	modification.	
Epichemicals (Small	Compounds (frequently small molecules) that affect the activity of	30-
molecule epigenetic	epigenetic regulators and provoke global (genome wide) changes in	32
modulators)	epigenetic marks	
Epigenetic	Mitotically and/or meiotically heritable changes in gene function that cannot be explained by changes in DNA sequence	34
Epigenetic inheritance	Inheritance of a phenotype in a manner that is independent of the DNA sequence and that remains self-perpetuating in the absence of the initial stimulus that caused the phenotype in the parental cell or organism.	10
Epiegenetic marker	A chemical modification of DNA or histones that serves as a "mark" for the regulation of gene expression.	
Epigenetic modifiers	Genes whose products modify the epigenome directly through	12
-r-8	DNA methylation, post-translational modifications of chromatin, or	
	higher-order chromatin structure.	
Epigenetic modulators	Factors that influence the activity or localization of epigenetic	12
	modifiers, representing a bridge between the environment and the epigenome.	
Epigenetic recombinant	A population of genetically identical plants that present mosaic	2
inbred lines (EpiRILs)	epigenomes. They are classically obtained by crossing parents with	
	hypomethylated genomes (mutants in genes necessary to maintain	
	DNA methylation) with isogenic wild-type parents. Plants of the F1	
	progeny are genetically identical, but have hybrid epigenomes.	
	After outsegregation of the mutation in the F2 generation, plants are	
	selfed across seven to eight generations, which results in a	
.	population with wild-type genotypes but mosaic epigenomes.	0
Epigenetic .	Genome-wide reorganisation of epigenetic modifications that	8,
reprogramming	overcomes stable epigenetic barriers and enables acquisition of	27-
	genomic potential. During the mammalian life cycle, epigenetic	29
	reprogramming occurs in PGCs and in early zygotic development.	
	In crop and forest plants, epigenetic reprogramming occurs during induction of somatic embryogenesis.	
Epigenetic stochasticity	A mechanism for increased variability of epigenetic marks at a	13
Epigenetic stochasticity	given location due to random, unpredictable fluctuations of	15
	epigenetic modifications	
Epigenetic editing	refers to a targeted change of a specific epigenetic mark (i.e.,	34
Lpigenetic cutting	methylated cytosine or histone tail methylation, acetylation, etc.) at	54
	a predefined genomic site, mostly in order to modulate transcription	
Epigenetics	Changes in gene expression or cellular phenotype that are	1
Epigeneties	transmitted during mitosis and/or meiosis or that are stably	1
	maintained in cells in the absence of any triggering signal and are	
	not due to a change in the underlying DNA sequence.	
Epigenetic memory	(somatic memory and inter/transgenerational memory), which	34
	allows cells to maintain their identity during plant development and	
	"remember" favourable alterations leading to a selective advantage	
	(i.e in adverse environments)	

EPI-CATCH COST

Epigenome	Genome-wide distribution of 5mC and of histones PTMs.	1
	Epigenome description may also include the genome-wide	
	distribution of small RNAs that are guiding de novo DNA	
	methylation, of nucleosome occupancy and of the histone variants.	
	Methylome refers specifically to the distribution of 5mC over the	
	entire genome.	
Epigenome-wide	Studies of the relationship between epigenetic variants	13
association studies	(differentially methylated regions or differentially methylated	10
(EWAS)	positions) in the population and stress phenotypes.	
Epigenomics	The genome-wide study of modifications to DNA and associated	18
Epigenonnes	proteins such as a variety of modified and variant histones,	10
	•	
-	nucleosome positioning, transcription factors as well as RNAs.	10
Epigenotype	The stable pattern of epigenetic marks that is outside the actual	19
	DNA sequence. Variation among epigenotypes might also be called	
	'heritable epigenetic variation' or 'transgenerational epigenetic	
	variation'.	
Epimutation	Epigenetic modification that results in heritable or stable changes in	1
-	gene expression (activation of a silent gene or silencing of an active	
	gene) but is not associated with modifications to the underlying	
	DNA sequence.	
epiRIL population	Recombinant inbred lines (RIL) that have wild-type genotypes, but	18
epixie population	contain mosaic epigenomes based on the parental lines used to	10
F uisterie	establish the population.	2
Epistasis	A form of gene interaction, whereby one gene interferes with the	3
	phenotypic expression of another non-allelic gene or genes. Gene X	
	is said to be epistatic to gene Y if an allele of gene X alters the	
	encoded effects of gene Y. In the case of epistasis, the combined	
	phenotypic effect of two or more genes is either less than (negative	
	epistasis) or greater than (positive epistasis) the sum of effects of	
	individual genes.	
Formaldehyde-Assisted	A technique used to isolate all open regions of the chromatin.	26
Isolation of Regulatory		-
Elements (FAIRE)		
Genetic methylation unit	A cluster of differentially methylated positions (DMPs) and the	13
		15
(GeMe)	single-nucleotide polymorphisms (SNPs) regulating their	
	methylation in the same chromosomal region; GeMes include	
	methylation quantitative trait loci (MeQTLs) and also	
	noncontiguous regions separating the DMPs and their controlling	
	SNPs, even outside the same linkage disequilibrium block.	
Genomic imprinting	Parent-of-origin-specific epigenetic marks generally associated	13
	with comparative silencing of the allele transmitted to the offspring.	
Genomic imprints	Genomic sequences that exhibit differences in CpG methylation	9
1	according to the parent of origin. These differentially methylated	
	regions (DMRs) can influence the allele-specific expression of one	
	or more genes.	
Heritable epigenetic	Changes that occur in biological molecules and/or their	9
		9
changes	arrangements that are transmitted across generations without	
	altering the genome sequence. Past definitions have been similarly	
	broad or narrower with a focus on particular chemical	
	modifications (e.g., DNA methylation) or changes in regulators	
	(e.g., small RNAs). The concepts outlined here apply to both types	
	of definitions.	
Histone chaperone	Proteins or protein complexes that specifically bind histones,	11
	thwarting non-specific interactions, and that promote their	
	deposition or removal from DNA in an ATP-independent manner.	
	Teposition of removie from Divis in an ATT -independent mainer.	1

EPI-CATCH COST

Histone modification	A change in the chemical composition of histones.	
Histone variant	Core canonical and linker histones are encoded by a number of different histone genes, resulting in a number of non-synonymous substitutions and divergent domains. This variation adds	10
	complexity to the epigenetic landscape.	
Hypermethylation	An increase in normal methylation levels	24
Hypomethylation	A decrease in normal methylation levels	24
Intergenerational versus transgenerational	Transgenerational epigenetic inheritance involves changes that persist to affect progeny that were not exposed to the original trigger. When progeny are directly exposed to the environmental effect, the effect is not 'transgenerational' but 'intergenerational'.	16
Long noncoding RNAs (lncRNAs)	A class of regulatory RNAs longer than 200 nucleotides that are epigenetic regulators of gene expression through their ability to bind chromatin-modifying complexes and guide them to target loci.	19
Long terminal repeat (LTR)	Terminal repeat regions harboring regulatory motifs, present at the 5' and 3' ends of retroelements flanking the polyprotein domain. The two LTRs of a TE are identical at insertion time. Accumulation of mutations in the LTRs over time is used to estimate the insertion time of TEs.	19
Methylation quantitative trait loci (meQTLs)	Single-nucleotide polymorphisms (SNPs) associated with differentially methylated positions (DMPs), constituting a link between genomewide and epigenome-wide association studies.	13
Methylation Sensitive Amplification Polymorphism (MSAP)	Methylation Sensitive Amplification Polymorphism (MSAP) is a modification of the Amplified Fragment Length Polymorphism technique. It utilizes cleavage with the methylation-sensitive restriction enzymes HpaII or MspI, followed by adapter ligation, amplification, and further gel analysis. The cleavage capacities of HpaII and MspI are strongly affected by the methylation state of the external and internal cytosine residues within the recognized 5' - CCGG-3' sequences. Thus, the methylation state can be determined for specific bands based on the ability of each enzyme to cleave the restriction site.	35
MethylC-Seq	A genome-wide technique to survey base resolution maps of DNA methylation using high-throughput sequencing.	18
Miniature inverted-repeat transposable elements (MITEs)	non-autonomous DNA elements that are less than \sim 600 bp, derived by deletion of the internal coding region and characterized by their terminal inverted repeat (TIR) structure. They are present in high copy numbers with significantly uniform copies closely associated with genes.	19
miRNAs	Families of short regulatory RNAs, 21–24 nucleotides in length that are master regulators of developmental pathways and the stress response; miRNA precursors are processed by DCL1 and associated with mRNA cleavage resulting in post-transcriptional gene silencing (PTGS).	19
Non-Mendelian inheritance	The phenomenon of transgenerational transmittance of traits not explained by classical Mendelian genetic principles. For instance, the epigenome, which represents the component of the genome beyond DNA sequence variation and has many layers, such as DNA methylation, histone methylation, histone acetylation, and small regulatory RNAs.	20
Nucleosome	The fundamental unit of chromatin, which is composed of DNA wrapped around a set of eight histones.	
Paramutation	Gene silencing phenomenon, whereby one allele can induce heritable changes in another allele at the same locus.	9

Polycomb Group	A group of proteins involved in the regulation and transcriptional	11
Proteins	silencing of key developmental genes, including the Homeotic (or	
	Hox) gene loci. Human PcG proteins assemble into Polycomb	
	Repressive Complexes (PRCs), of which PRC2 catalyzes the	
	methylation of H3K27 and PRC1 guides the ubiquitin ligation of	
	H2AK119.	
Primary and secondary	Primary small RNAs (either endogenous or an exogenous) can be	17
small RNAs	gnomically encoded or derive from exogenously supplied dsRNA	
	(which can be provided, for example, by feeding the worms with	
	bacteria that express dsRNA). Primary small RNAs can recruit	
	RdRPs to complementary targets, and thus trigger amplification of	
	additional 'secondary' small RNAs. Secondary (or 'amplified')	
	small RNAs are typically 22 nt in length and possess guanosine as	
	their first nucleotide (22G).	
Priming	Sensitization of plant responses following exposure to a stimulus;	2
	allows a plant to respond in a more rapid and effective way to a	
	later stimulus (the same or equivalent) compared with a nonprimed	
	plant.	<u> </u>
Priming	a first encounter with the stress can trigger the establishment of a	34
	molecular memory that primes or acclimates the plant and/or its	
	offspring, which will be better prepared to respond in the eventual	
	case of a second stress	
RNA-dependent RNA	Proteins that synthesize amplified small RNAs (e.g. siRNAs)	
Polymerases (RdRPs)	producing dsRNA using a single stranded RNA as template.	10
RNA-directed DNA	A mechanism that is involved in silencing through a feedback loop	18
methylation (RdDM)	consisting of small RNAs guiding DNA methylation and histone	
<u> </u>	modifications.	
Single Methylation	methylation value at a cytosine position	34
Polymorphism (SMP)	The active sulfonium form of methionine that serves as the	22
S-adenosylmethionine (SAM)	principal donor of methyl groups for methylation reactions.	23
Second trigger	An additional RNAi-inducing dsRNA trigger which differs in its	17
Second trigger	sequence from the first trigger (that triggered RNAi in a previous	1/
	generation). Thus, the second trigger is administered to progeny	
	that inherit from their parents a different heritable RNAi response	
	(targeted against a different gene). Second triggers enhance the	
	silencing effect and prolong the duration of the ancestral RNAi	
	responses.	
Small RNAs (smRNAs)	21–24 nucleotides (nt) RNA species that can guide machinery to	18
	silence loci post-transcriptionally (21 nt smRNAs) and/or	
	transcriptionally (24 nt smRNAs).	
Transcription factor	Protein that binds to specific cis-regulatory DNA sequences, called	25
L	response elements, to control the transcription of genes.	
Transgenerational	Modifications of gene expression patterns that are transmitted from	2
epigenetic inheritance	one generation to the next via germ lines; they are not due to	
(TEI)	changes in the DNA sequence but to changes in the epigenetic state	
	of the genes.	
Transgenerational	Change in offspring phenotype that is cued by an environmental	19
induction	signal in the parental generation, and is expressed independently of	
	changes in the offspring genotype. It can occur via epigenetic	
	inheritance or due to maternal effects.	
Transposon/transposable	DNA sequences that can 'jump' from one location in the genome to	2
element (TE)	another. They include retrotransposons that are mobile following a	
	'copy and paste' mechanism and require an RNA intermediate, and	
	DNA transposons that move using a 'cut and paste' mechanism.	

References

1 P. Gallusci, et al., (2017) Epigenetics for Plant Improvement: Current Knowledge and Modeling Avenues. Trends Plant Sci. 22.

2 R. K. Varshney, D. A. Hoisington, A. K. Tyagi (2006) Advances in cereal genomics and applications in crop breeding. Trends Biotechnol. 24.

3 J. A. Hackett, J. J. Zylicz, M. A. Surani (2012) Parallel mechanisms of epigenetic reprogramming in the germline. Trends Genet. 28.

4 M. Chey, A. M. Jose (2022) Heritable epigenetic changes at single genes: challenges and opportunities in Caenorhabditis elegans. Trends Genet. 38.

5 E. I. Campos, J. M. Stafford, D. Reinberg (2014) Epigenetic inheritance: Histone bookmarks across generations. Trends Cell Biol. 24.

6 A. P. Feinberg (2018) The Key Role of Epigenetics in Human Disease Prevention and Mitigation. N. Engl. J. Med. 378.

7 E. Nilsson, M. K. Skinner (2014) Definition of Epigenetic Transgenerational Inheritance and Biological Impacts" in Transgenerational Epigenetics.

8 L. Houri-Zeevi, O. Rechavi (2017) A Matter of Time: Small RNAs Regulate the Duration of Epigenetic Inheritance. Trends Genet. 33.

9 R. J. Schmitz, J. R. Ecker (2012) Epigenetic and epigenomic variation in Arabidopsis thaliana. Trends Plant Sci. 17.

10 L. M. Holeski, G. Jander, A. A. Agrawal (2012) Transgenerational defense induction and epigenetic inheritance in plants. Trends Ecol. Evol. 27.

11 R. Ragupathy, F. M. You, S. Cloutier (2013) Arguments for standardizing transposable element annotation in plant genomes. Trends Plant Sci. 18.

12 J. L. Bennetzen (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr. Opin. Genet. Dev. 15.

13 M. Tariq, J. Paszkowski (2004) DNA and histone methylation in plants. Trends Genet. 20.

14 T. J. Stevenson (2018) Epigenetic Regulation of Biological Rhythms: An Evolutionary Ancient Molecular Timer. Trends Genet. 34.

15 L. Duempelmann, M. Skribbe, M. Bühler (2020) Small RNAs in the Transgenerational Inheritance of Epigenetic Information. Trends Genet. 36.

16 B. P. Williams, M. Gehring (2020) Principles of Epigenetic Homeostasis Shared Between Flowering Plants and Mammals. Trends Genet. 36.

17 A. Boyko, I. Kovalchuk (2011) Genome instability and epigenetic modification-heritable responses to environmental stress? Curr. Opin. Plant Biol. 14.

18 P. Gallusci, et al. (2023) Deep inside the epigenetic memories of stressed plants Plant Science. Trends Plant Sci. 28.

19 https://www.publichealth.columbia.edu/research/laboratory-precision-environmental-health/epigenetics-glossary

20 A. Ashe, E. Whitelaw (2007) Another role for RNA: a messenger across generations. Trends Genet. 23.

21 D. P. Chen, Y. C. Lin, C. S. J. Fann (2016) Methods for identifying differentially methylated regions for sequence- and array-based data. Brief. Funct. Genomics 15.

22 M.A. Asensi-Fabado, A. Amtmann, G. Perrella, (2017). Plant responses to abiotic stress: the chromatin context of transcriptional regulation. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1860, 106-122.

23 B. Sekula, M. Ruszkowski, Z. Dauter, Z. (2020) S-adenosylmethionine synthases in plants: Structural characterization of type I and II isoenzymes from Arabidopsis thaliana and Medicago truncatula. Int. J. Biol. Macromol. 151, 554-565.

24 D. Bouyer, A. Kramdi, M. Kassam, M. et al. (2017) DNA methylation dynamics during early plant life. Genome Biol. 18, 179.

25 J.M. Franco-Zorrilla, I. López-Vidriero, J.L. Carrasco, M. Godoy, P. Vera, R. Solano (2014) DNA-binding specificities of plant transcription factors and their potential to define target genes. Proceedings of the National Academy of Sciences, 111, 2367-2372.

26 S. Baum, E.M. Reimer-Michalski, M.R. Jaskiewicz, U. Conrath (2020) Formaldehydeassisted isolation of regulatory DNA elements from Arabidopsis leaves. Nat Protoc. 15.

27 M. T. Solís, M. Rodríguez-Serrano, M. Meijón, M. J. Cañal, A. Cifuentes, M. C. Risueño et al. (2012). DNA methylation dynamics and MET1a-like gene expression changes during stress-induced pollen reprogramming to embryogenesis. J. Exp. Bot. 63, 6431-6444.

28 P. S. Testillano (2019) Microspore embryogenesis: targeting the determinant factors of stress-induced cell reprogramming for crop improvement. J. Exp. Bot. 70, 2965-2978.

29 H. Rodriguez-Sanz, J. Moreno-Romero, M. T. Solís, C. Köhler, Risueño M. C., Testillano P. S. (2014). Changes in histone methylation and acetylation during microspore reprogramming to embryogenesis occur concomitantly with BnHKMT and BnHAT expression and are associated to cell totipotency, proliferation and differentiation in Brassica napus. Cytogenet Genome Res. 143, 209-218.

30 M. T. Solís, A. A. El-Tantawy, V. Cano, M. C. Risueño, P. S. Testillano (2015). 5azacytidine promotes microspore embryogenesis initiation by decreasing global DNA methylation, but prevents subsequent embryo development in rapeseed and barley. Front. Plant Sci. 6, 1–17.

31 M. Baránek, V. Kováčová, F. Gazdík, M. Špetík, A. Eichmeier, J. Puławska, et al. (2021). Epigenetic modulating chemicals significantly affect the virulence and genetic characteristics of the bacterial plant pathogen Xanthomonas campestris pv. campestris. Genes 12, 804.

32 E. Berenguer, I. Bárány, M. T. Solís, Y. Pérez-Pérez, M.C. Risueño, P. S. Testillano (2017). Inhibition of histone H3K9 methylation by BIX-01294 promotes stress-induced microspore totipotency and enhances embryogenesis initiation. Front. Plant Sci. 8, 1161.

33 H. Zhang, B. Wang, C. G. Duan, J. K. Zhu (2013). Chemical probes in plant epigenetics studies. Plant Signal. Behav. 8, e25364.

34 I. Kakoulidou, E. V. Avramidou, M. Baránek, S. Brunel-Muguet, S. Farrona, F. Johannes, E. Kaiserli, M. Lieberman-Lazarovich, F. Martinelli, V. Mladenov, P. S. Testillano, V. Vassileva, S. Maury (2021) Epigenetics for Crop Improvement in Times of Global Change. Biology, 10, 766.

35 K. Chwialkowska, U. Korotko, J. Kosinska, I. Szarejko, M. Kwasniewski (2017). Methylation Sensitive Amplification PolymorphismSequencing (MSAP-Seq)—A Method for High-Throughput Analysis of Differentially Methylated CCGG Sites in Plants with Large Genomes. Front. Plant Sci. 8:2056.